Abstract
Photovoltaic reverse osmosis (PVRO) systems can provide a viable clean water source for many remote communities. To be cost-effective, PVRO systems need to be custom-tailored for the local water demand, solar insolation, and water characteristics. Designing a custom system composed of modular components is not simple due to the large number of design choices and the variations in the sunlight and demand. This paper presents a modular design architecture, which when implemented on a low-cost PC, would enable users to configure systems from inventories of modular components. The method uses a hierarchy of filters or design rules, which can be provided in the form of an expert system, to limit the design space. The architecture then configures a system from the reduced design space using a genetic algorithm to minimize the system lifetime cost subject to system constraints. The genetic algorithm uses a detailed cost model and physics-based PVRO system model which determines the ability of the system to meet demand. Determining the ability to meet demand is challenging due to variations in water demand and solar radiation. Here, the community’s historical water demand, solar radiation history, and PVRO system physics are used in a Markov model to quantify the ability of a system to meet demand or the loss-of-water probability (LOWP). Case studies demonstrate the approach and the cost-reliability trade-off for community-scale PVRO systems. In addition, long-duration simulations are used to demonstrate the Markov model appropriately captures the uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.