Abstract

Currently, there are only a small number of robotic systems used in various surgical fields. As modified industrial robot systems have shown significant limitations in the past, specialized kinematic solutions have been proposed for specific surgical applications. The majority of these systems are designed for specific applications in only a limited number of cases. The acquisition and operating costs are high, hindering the dissemination and broad clinical application of such systems. To address this problem, a modular mini-robot system is proposed, which can be easily adapted to different application-specific requirements. Therefore, the requirements of different applications have been categorized and clustered to a standardized requirement profile. Next, a modular robot based on a hybrid kinematic module structure has been developed. This concept has been implemented and tested in in vitro studies for different applications, such as revision total hip replacement and unicondylar knee arthroplasty. User-orientated tests of the intraoperative handling, as well as accuracy tests, proved the feasibility of the concept.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call