Abstract
Janus structures that include different functional compartments have attracted significant attention due to their specific properties in a diverse range of applications. However, it remains challenge to develop an effective strategy for achieving strong interfacial interaction. Herein, a Janus nanoreactor consisting of TiO2 2D nanocrystals integrated with Prussian blue analog (PBA) single crystals is proposed and synthesized by mimicking the planting process. In situ etching of PBA particles induces nucleation and growth of TiO2 nanoflakes onto the concave surface of PBA particles, and thus enhances the interlayer interaction. The anisotropic PBA–TiO2 Janus nanoreactor demonstrates enhanced photocatalytic activities for both water reduction and oxidation reactions compared with TiO2 and PBA alone. As far as it is known, this is the first PBA‐based composite that serves as a bifunctional photocatalyst for solar water splitting. The interfacial structure between two materials is vital for charge separation and transfer based on the spectroscopic studies. These results shed light on the elaborate construction of Janus nanoreactor, highlighting the important role of interfacial design at the microscale level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.