Abstract

Motivations for the hierarchical assembly of protein complexes are diverse spanning biosensing, biomedical and bioreactor applications. The assembly processes should be simple, scalable, versatile, and biologically benign to minimize loss of component parts. A “plug and play” methodology comprising a generic linking apparatus may enable rapid design and optimization. One application that desires these qualities is metabolon construction wherein multiple enzymes are organized in defined pathways to mediate biochemical flux. Here, we propose a modular design by incorporation of crosslinking-compliant amino acid tags comprised of lysine or glutamine residues at the N- or C-termini of the to-be-assembled proteins. These amino acid tags enable covalent crosslinking using microbial transglutaminase (mTG). Modularity is demonstrated where stoichiometries and relative positions of enzymes and other functional proteins are altered. Construction of multifunctional complexes is demonstrated by crosslinking domains of different function and origin. Namely, we built a two-subunit quorum sensing (QS) biosynthetic metabolon on solid supports and altered stoichiometries of the limiting constituents to increase the overall rate of reaction. To display functionality beyond biosynthesis, we constructed a molecular communication ‘device’ (antibody binding Protein G–QS complex) to target bacterial cells and demonstrated tailored QS responses among targeted bacteria. We propose that this approach, solid phase mTG-mediated linkage of biological components, can be used for assembly within many environments including microreactors or lab-on-a-chip systems. Because the methodology is general, we envision construction of multi-functional protein complexes in a ‘plug and play’ fashion for a variety of biosensing and synthetic biology applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.