Abstract

It is known that the 3-manifold SL(2,Z)\SL(2,R) is diffeomorphic to the complement of the trefoil knot in S3. E. Ghys showed that the linking number of this trefoil knot with a modular knot is given by the Rademacher symbol, which is a homogenization of the classical Dedekind symbol. The Dedekind symbol arose historically in the transformation formula of the logarithm of Dedekind’s eta function under SL(2,Z). In this paper we give a generalization of the Dedekind symbol associated to a fixed modular knot. This symbol also arises in the transformation formula of a certain modular function. It can be computed in terms of a special value of a certain Dirichlet series and satisfies a reciprocity law. The homogenization of this symbol, which generalizes the Rademacher symbol, gives the linking number between two distinct symmetric links formed from modular knots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.