Abstract
Click chemistry is a concept in which modular synthesis is used to rapidly find new molecules with desirable properties1. Copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) triazole annulation and sulfur(VI) fluoride exchange (SuFEx) catalysis are widely regarded as click reactions2-4, providing rapid access to their products in yields approaching 100% while being largely orthogonal to other reactions. However, in the case of CuAAC reactions, the availability of azide reagents is limited owing to their potential toxicity and the risk of explosion involved in their preparation. Here we report another reaction to add to the click reaction family: the formation of azides from primary amines, one of the most abundant functional groups5. The reaction uses just one equivalent of a simple diazotizing species, fluorosulfuryl azide6-11 (FSO2N3), and enables the preparation of over 1,200 azides on 96-well plates in a safe and practical manner. This reliable transformation is a powerful tool for the CuAAC triazole annulation, the most widely used click reaction at present. This method greatly expands the number of accessible azides and 1,2,3-triazoles and, given the ubiquity of the CuAAC reaction, it should find application in organic synthesis, medicinal chemistry, chemical biology and materials science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.