Abstract
This paper is the first part of a dilogy devoted to modular classes of Jacobi structures from the general line bundle perspective as well as their associated Lie algebroids. First, we explain the relationship between Jacobi algebroids and their associated Gerstenhaber-Jacobi algebras. Then, we show that given a Jacobi manifold, there is a differential complex associated to it whose differential operator is similar to the so-called Koszul-Brylinski operator. This allows us to define Jacobi homology for Jacobi bundles. Moreover, we show that there are generating operators for the Gerstenhaber-Jacobi algebra associated to the Atiyah algebroid DL whose sections are derivations of the associated line bundle L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.