Abstract

AbstractUpcycling of waste poly(ethylene terephthalate) (PET) into valuable products represents a promising avenue for advancing carbon neutrality and circular economy. Here, we demonstrate a modular strategy for converting waste PET into glycolic acid (GA) and 2,4‐pyridine dicarboxylic acid (2,4‐PDCA), achieving an upcycling process and 45% reduction in greenhouse gas emissions. We conducted comprehensive studies on PET hydrolysis, PET‐derived ethylene glycol (EG) photooxidation, and PET‐derived terephthalic acid (TPA) bioconversion. Utilizing a plasmon‐active CuPt nanoalloy, EG oxidation proceeds at mild conditions with impressive EG conversion (94.78%) and GA yield (71.98%). Two Escherichia coli strains were employed to convert TPA into 2,4‐PDCA, achieved a 91.03% molar yield. This work successfully accomplishes the comprehensive utilization of waste PET through an environmentally friendly and economically viable strategy, leading to a significant reduction in PET plastic pollution while simultaneously generating substantial economic benefits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.