Abstract

The modular synthesis of a series of nanoscale phenylene bicyclophanes with an intraaanular orthogonal pillar is described. The compounds are obtained by a Suzuki cross-coupling condensation and are characterized by mass spectrometry and NMR spectroscopy as well as in situ scanning tunneling microscopy at the solid/liquid interface of highly ordered pyrolytic graphite. In addition, their structures and conformations are supported by quantum chemical calculations, also after adsorption to the substrate. A set of two alkyl chain substitution patterns as well as a combination of both was investigated with respect to their ability to form extended 2D-crystalline superstructures on graphite. It shows that not the most densely packed surface coverage gives the most stable structure, but the largest number of alkyl chains per molecule determines the structural robustness to alterations at the pillar functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.