Abstract

The quest for developing quantum technologies is driven by the promise of exponentially faster computations, ultrahigh performance sensing, and achieving thorough understanding of many-particle quantum systems. Molecular spins are excellent qubit candidates because they feature long coherence times, are widely tunable through chemical synthesis, and can be interfaced with other quantum platforms such as superconducting qubits. A present challenge for molecular spin qubits is their integration in quantum devices, which requires arranging them in thin films or monolayers on surfaces. However, clear proof of the survival of quantum properties of molecular qubits on surfaces has not been reported so far. Furthermore, little is known about the change in spin dynamics of molecular qubits going from the bulk to monolayers. Here, a versatile bottom-up method is reported to arrange molecular qubits as functional groups of self-assembled monolayers (SAMs) on surfaces, combining molecular self-organization and click chemistry. Coherence times of up to 13 µs demonstrate that qubit properties are maintained or even enhanced in the monolayer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call