Abstract
We consider approximations of probability distributions over ℤ p n . We present an approach to estimate the quality of approximations towards the construction of small probability spaces which are used to derandomize algorithms. In contrast to results by Even et al. [13], our methods are simple, and for reasonably small p, we get smaller sample spaces. Our considerations are motivated by a problem which was mentioned in recent work of Azar et al. [5], namely, how to construct in time polynomial in n a good approximation to the joint probability distribution of i.i.d. random variables X1,...,X n where each X i has values in {0,1}. Our considerations improve on results in [5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.