Abstract

AbstractIn their recent paper, Staver and Hansen (Global Ecology and Biogeography, 2015, 24, 985–987) refute the case made by Hanan et al. (Global Ecology and Biogeography, 2014, 23, 259–263) that the use of classification and regression trees (CARTs) to predict tree cover from remotely sensed imagery (MODIS VCF) inherently introduces biases, thus making the resulting tree cover unsuitable for showing alternative stable states through tree cover frequency distribution analyses. Here we provide a new and equally fundamental argument for why the published frequency distributions should not be used for such purposes. We show that the practice of pre‐average binning of tree cover values used to derive cover values to train the CART model will also introduce errors in the frequency distributions of the final product. We demonstrate that the frequency minima found at tree covers of 8–18%, 33–45% and 55–75% can be attributed to numerical biases introduced when training samples are derived from landscapes containing asymmetric tree cover distributions and/or a tree cover gradient. So it is highly likely that the CART, used to produce MODIS VCF, delivers tree cover frequency distributions that do not reflect the real world situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.