Abstract

BackgroundRespiratory infections caused by influenza viruses spread rapidly, resulting in significant annual morbidity and mortality worldwide. Currently, the most effective public health measure against infection is immunisation with an influenza vaccine matching the relevant circulating influenza strains. Although a number of developments in terms of influenza vaccine production, safety and immunogenicity have been reported, limitations in our understanding of vaccine stability still exist. In this report we seek to identify compounds that increase influenza vaccine thermostability. MethodsWe use plaque inhibition on confluent MDCK cells to identify compounds which inhibit the entry of various seed strain viruses. The effect of these compounds on vaccine thermal lability is evaluated through SRID analysis. The significance of these results is tested by a two-way analysis of variance (ANOVA) method. ResultsWe identify two compounds which selectively inhibit entry of different group I or group II influenza strains through prevention of the neutral-pH to low-pH conformational change of hemagglutinin. Compounds which were able to inhibit virus entry were also able to limit thermally induced potency loss in matched influenza vaccines. Furthermore, we demonstrate that this effect is independent of product formulation or the presence of multiple HA types. ConclusionsThis work provides further evidence for a link between HA conformational stability in the virus and thermostability of the corresponding vaccine preparation. It also suggests straightforward approaches to improve the stability and predictability of influenza vaccine preparations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call