Abstract
Colonic tissues of patients with inflammatory bowel disease have been reported to have increased proteolytic activity, but no studies have clearly addressed the role of the balance between proteases and antiproteases in the pathogenesis of colitis. We investigated the role of Elafin, a serine protease inhibitor expressed by skin and mucosal surfaces in human inflammatory conditions, and the proteases neutrophil elastase (NE) and proteinase-3 (PR-3) in mice with colitis. We studied mice with heterozygous disruptions in NE and PR-3, mice that express human elafin (an inhibitor of NE and PR-3), and naïve mice that received intracolonic adenoviral vectors that express elafin. Trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulphate (DSS) was used to induce colitis. Protease, cytokine levels, and NF-κB activity were measured in colons of mice. Caco-2 and HT29 cells were studied in assays for cytokine expression, permeability, and NF-κB activity. Elafin expression or delivery re-equilibrated the proteolytic balance in inflamed colons of mice. In mice given TNBS or DSS, transgenic expression of elafin or disruption of NE and PR-3 protected against the development of colitis. Similarly, adenoviral delivery of Elafin significantly inhibited inflammatory parameters. Elafin modulated a variety of inflammatory mediators in vitro and in vivo and strengthened intestinal epithelial barrier functions. The protease inhibitor Elafin prevents intestinal inflammation in mouse models of colitis and might be developed as a therapeutic agent for inflammatory bowel disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.