Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) is one of the key enzymes in the catalytic reaction of taurochenodeoxycholic acid (TCDCA). To improve the activity of immobilized 7α-HSDH, the microenvironment of immobilized 7α-HSDH was modified with epoxy resin and ethanediamine (EDA). The amino-epoxy support was characterized by Fourier transform infrared (FTIR), Spectrometer elemental analysis (EA), scanning electron microscopy (SEM), contact angle (CA), and Zetasizer. The effects of the immobilization of 7α-HSDH on the amino-epoxy resin and epoxy resin were studied. The results indicated that the relative activity of immobilized 7α-HSDH on the amino-epoxy resin increased by approximately 80%. Meanwhile, the immobilized 7α-HSDH showed favorable thermal stability and operational stability. The thermal stability of immobilized 7α-HSDH increased at temperatures ranging from 15 to 35°C, while the relative activities of 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin retained 56.4% and 61.0%. After 6cycles, the residual activities of the 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin were 81.4% and 89.5%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.