Abstract

Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. Latterly, long chain polyunsaturated omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexanoic acid (DHA; 22:6 Δ4,7,10,13,16,19), which typically only enter the human diet via the consumption of oily fish, have attracted much attention. The health benefits of the omega-3 LC-PUFAs EPA and DHA are now well established. Given the desire for a sustainable supply of omega-LC-PUFA, efforts have focused on enhancing the composition of vegetable oils to include these important fatty acids. Specifically, EPA and DHA have been the focus of much study, with the ultimate goal of producing a terrestrial plant-based source of these so-called fish oils. Over the last decade, many genes encoding the primary LC-PUFA biosynthetic activities have been identified and characterized. This has allowed the reconstitution of the LC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate omega-3 LC-PUFA to levels similar to that found in fish oil. In this review, we will describe the most recent developments in this field and the challenges of overwriting endogenous seed lipid metabolism to maximize the accumulation of these important fatty acids.

Highlights

  • Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain

  • Plant oils are rich in C18 fatty acids (FA), including the essential FA linoleic acid (18:2Δ9,12 n-6; LA) and α-linolenic acid (18:3Δ9,12,15 n-3; ALA), but are devoid of LC-PUFAs, such as arachidonic acid (20:4Δ5,8,11,14, n-6; Arachidonic acid (ARA)), eicosapentaenoic acid (20:5Δ5,8,11,14,17 n-3; EPA) and docosahexaenoic acid (22:6Δ4,7,10,13,16,19 n-3; docosahexanoic acid (DHA)), which typically only enter the human diet as oily fish

  • Sayanova et al (2012) evaluated this activity in transgenic yeast, Arabidopsis thaliana and Camelina sativa, demonstrating that the use of acyl-CoA-dependent Δ6-desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ-linolenic acid in total seed lipids and that the expression of acyl-CoA Δ6desaturases resulted in increased distribution of long-chain polyunsaturated FAs in the polar lipids of transgenic plants, reflecting a larger substrate pool available for acylation by enzymes of the Kennedy pathway

Read more

Summary

Introduction

Omega-3 fatty acids are characterized by a double bond at the third carbon atom from the end of the carbon chain. These circumstances have led to an increasing interest in the search for alternative sustainable sources of omega-3 LC-PUFAs. Presently, there are two potential alternatives to fish oils: EPA and DHA from metabolically engineered plant oilseeds and microbial single cell oils (see Adarme-Vega et al 2014).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call