Abstract

As technology scaling increases computer memory’s bit-cell density and reduces the voltage of semiconductors, the number of soft errors due to radiation induced single event upsets (SEU) and multi-bit upsets (MBU) also increases. To address this, error-correcting codes (ECC) can be used to detect and correct soft errors, while x-modular-redundancy improves fault tolerance. This paper presents a technique that provides high error-correction performance, high speed, and low complexity. The proposed technique ensures that only correct values get passed to the system output or are processed in spite of the presence of up to three-bit errors. The Hamming code is modified in order to provide a high probability of MBU detection. In addition, the paper describes the new technique and associated analysis scheme for its implementation. The new technique has been simulated, evaluated, and compared to error correction codes with similar decoding complexity to better understand the overheads required, the gained capabilities to protect data against three-bit errors, and to reduce the misdetection probability and false-detection probability of four-bit errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.