Abstract

The primary challenge in the large-scale production of metal-air batteries or fuel cells is the high cost of Pt, which is used in the oxygen reduction reaction. To address this issue, we synthesized non-precious metal catalysts by doping Fe, N, and S in various sequences. X-ray diffraction and Raman spectroscopy proved that these catalysts had a higher degree of graphitization than carbon black. While the Fe3C phase was found in the catalyst without S, it was absent in all Fe-NSC catalysts. Imaging and X-ray absorption near edge structure (XANES) studies showed atomically dispersed Fe metal in the S-doped non-precious metal catalysts. X-ray photoelectron spectroscopy (XPS) and XANES reveal that the active site concentrations, inactive Fe-S bond, and oxidation number of the Fe species vary according to the N and S doping sequences. Fe-NSC-1 showed fast kinetics and high selectivity, with an onset potential of 0.96 V. Even after 10,000 potential cycles between 0.6 and 1.0 V, the half-wave potential for Fe-NSC-1 decreased by only 3%. Additionally, the Fe-NSC-1 catalyst showed a negligible decrease in current density during the methanol tolerance tests. Overall, this study found that the doping sequence plays a vital role in enhancing the electrochemical performance and stability of these catalysts under suitable operating conditions by influencing their chemical and electronic structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call