Abstract

Bacterial cellulose (BC) is a nanoscale and useful biomaterial with a fine fiber network and high water holding capacity. However, dried BC exhibits poor rehydration ability. The present study investigated the rehydration ability of composites of hydrolyzed gelatin peptides (HGP) and hydroxypropylmethyl cellulose-modified BC (HBC). The HGP with molecular weights <9 kDa were obtained by hydrolyzing gelatin with a combination of 1 % alcalase and 1.5 % pronase E at 50 °C for 2 h. The HGP/HBC nanocomposites exhibited higher rehydration ratios than composites prepared with gelatin. According to SEM images, gelatin and HGP successfully penetrated the cellulose network in composite films prepared using both immersion and adsorption (DA) methods. The high hydrophilic property of HGP resulted in a rehydration ratio of approximately 180 % at a HGP/HBC ratio of 4.5:1 (W/W) in DA composites. The 1 min rehydrated HGP/HBC composites possessed similar mechanical properties to the original wet type composites. Overall, results indicated that the HGP/HBC composites prepared using the DA method demonstrated the highest rehydration ability among the composite films evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call