Abstract
AbstractAflatoxins in contaminated corn do not degrade in corn fermentation solution (CFS) during biofuel production; rather, they are enriched in the co-product, dried distillers grain. Aflatoxin B1 (AfB1) is the most toxic form of all aflatoxins. Removing AfB1 from CFS is desirable to minimize its toxicity to animals. Smectites can adsorb AfB1 from aqueous solutions and, therefore, inactivate the toxin, but proteins in CFS inhibit the adsorption of AfB1 by smectites. The current study aimed to minimize the interference by CFS in adsorption of AfB1 on smectite by modifying a calcium-smectite (Ca-3MS) with a small nutritive organic compound, e.g. carnitine, choline, arginine, histidine, or tryptophan. The organo-smectites were characterized by X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy, and adsorption of AfB1 in CFS by these composites was examined. Various degrees of intercalation of the organic nutrients into the smectites were observed with XRD and FTIR. After immersing the smectite and organo-smectites in the CFS, the d001 values of Ca-3MS expanded to ~1.82 nm due to protein interaction, but the organo-smectites were confined to ~1.39 nm, which indicated that the protein had limited access to the organo-smectite interlayers. The IR bands at ~1652, 1544, 1538, and 1454 cm–1 from the organo-smectites revealed, however, that complete protein inhibition was not achieved. The organo-smectites were capable of adsorbing AfB1 in simple aqueous solution with maximal adsorption capacity up to 0.55 mol kg–1. Significantly greater (p ≤ 0.05) AfB1 adsorption was achieved by choline- and carnitine-modified smectites compared with the original Ca-3MS in the presence of competing protein (pepsin) in simple aqueous solution. In real CFS, both AfB1 adsorption capacities (Qmax) and affinities (K) by all organo-smectites were greater (Qmax = up to 0.45 mol kg–1 and K = up to 0.165 μM–1) than those by Ca-3MS (Qmax = 0.22 mol kg–1 and K = 0.031 μM–1). The study suggested that using smectites modified with an organic nutritive compound could be an effective, economical, and safe strategy for removing mycotoxins, including aflatoxins, during biofuel production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.