Abstract
The Newton-Raphson method is one of the methods to find solutions or roots of nonlinear equations. This method converges faster than other methods and is more effective in finding doubles. In this study, it will be shown that the Newton-Raphson modification uses modifications to the tangent equation. The results show that for every nth iteration, the speed difference of Newton Raphson modification is __. Furthermore, the convergence of Newton Raphson is __, and for Newton Raphson modification is __.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.