Abstract
A deterministic two-locus population genetic model with random mating is studied. The first locus, with two alleles, is subject to mutation and arbitrary viability selection. The second locus, with an arbitrary number of alleles, controls the mutation at the first locus. A class of viability-analogous Hardy-Weinberg equilibria is analyzed in which the selected gene and the modifier locus are in linkage equilibrium. It is shown that at these equilibria a reduction principle for the success of new mutation-modifying alleles is valid. A new allele at the modifier locus succeeds if its marginal average mutation rate is less than the mean mutation rate of the resident modifier allele evaluated at the equilibrium. Internal stability properties of these equilibria are also described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.