Abstract

The whale optimization algorithm (WOA) is a powerful swarm intelligence method which has been widely used in various fields such as parameter identification of solar cells and PV modules. In order to better balance the exploration and exploitation of WOA, we propose a novel modified WOA (MWOA) in which both the mutation strategy based on Levy flight and a local search mechanism of pattern search are introduced. On the one hand, Levy flight can make the algorithm get rid of the local optimum and avoid stagnation; thus, it is able to prevent the algorithm from losing diversity and to increase the global search capability. On the other hand, pattern search, a direct search method, has not only high convergence rate but also good stability, which can boost the local optimization ability of the WOA. Therefore, the combination of these two mechanisms can greatly improve the capability of WOA to obtain the best solution. In addition, MWOA may be employed to estimate parameters in single diode model (SDM), double diode model (DDM), and PV modules and to identify unknown parameters of two different types of PV modules under diverse light irradiance and temperature conditions. The analytical results demonstrate the validity and the practicality of MWOA for estimating parameters of solar cells and PV modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.