Abstract

We prove the existence of the modified wave operators for a scalar quasilinear wave equation satisfying the weak null condition. This is accomplished in three steps. First, we derive a new reduced asymptotic system for the quasilinear wave equation by modifying Hörmander’s method. Next, we construct an approximate solution, by solving our new reduced system given some scattering data at infinite time. Finally, we prove that the quasilinear wave equation has a global solution which agrees with the approximate solution at infinite time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.