Abstract
The fuzzy transportation problem is a very popular, well-known optimization problem in the area of fuzzy set and system. In most of the cases, researchers use type 1 fuzzy set as the cost of the transportation problem. Type 1 fuzzy number is unable to handle the uncertainty due to the description of human perception. Interval type 2 fuzzy set is an extended version of type 1 fuzzy set which can handle this ambiguity. In this paper, the interval type 2 fuzzy set is used in a fuzzy transportation problem to represent the transportation cost, demand, and supply. We define this transportation problem as interval type 2 fuzzy transportation problems. The utility of this type of fuzzy set as costs in transportation problem and its application in different real-world scenarios are described in this paper. Here, we have modified the classical Vogel’s approximation method for solved this fuzzy transportation problem. To the best of our information, there exists no algorithm based on Vogel’s approximation method in the literature for fuzzy transportation problem with interval type 2 fuzzy set as transportation cost, demand, and supply. We have used two Numerical examples to describe the efficiency of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.