Abstract

This work presents the application of a modified Taylor method to obtain a handy and easily computable approximate solution of the nonlinear differential equation to model the oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. The obtained solution is fully symbolic in terms of the coefficients of the equation, allowing to use the same solution for different values of the maximum reaction rate, the Michaelis constant, and the permeability of the cell membrane. Additionally, the numerical experiments show the high accuracy of the proposed solution, resulting 1.658509453A~10−15 as the lowest mean square error for a set of coefficients. The straightforward process to obtain the solution shows that the modified Taylor method is a handy alternative to a more sophisticated method because does not involve the solving of differential equations or calculate complicated integrals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.