Abstract

The modified super-wide-angle Sagnac imaging interferometer (MSASII) based on liquid crystals on silicon (LCoS) is proposed as a novel device for the detection of the upper atmospheric wind field. This device employs the phase-only modulation (POM) of LCoS coupled with the MSASII, and can measure phase changes in multi-band emissions without moving mirror. It can be used to replace the conventional Michelson’s interferometer with step-moving mirror device. The optical path difference (OPD) equation of MSASII-LCoS is derived, and the four compensation conditions (field, chromatics, thermal and achromaticity of thermal compensations) are discussed within the scope of wind measurement. The real parameters of LCoS and optical glasses are selected for numerical simulation and analysis. Three aurora lines (732.0, 630.0 and 557.7 nm) are considered, and their phase variations are 3.61, 2.02 and 0.15 fringes at the same incident angle of 3°, respectively. The rate of change of OPD with temperature is the magnitude of 10 −6 cm/K, and the corresponding phase variations are within 0.09 fringes. The accuracy of phase modulation can be 0.614×10 −2 rad when LCoS of 10-bits is used. The novel model MSASII-LCoS shows its advantage for atmospheric wind measurement in the aspects of the overall structure, anti-vibration, operational flexibility and detection accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.