Abstract
This paper presents a generalised constitutive model for destructured, naturally structured and artificially structured clays that extends the Structured Cam Clay (SCC) model. This model is designated as “Modified Structured Cam Clay (MSCC) model”. The influence of structure and destructuring on the mechanical behaviour of clay can be explained by the change in the modified effective stress, which is the sum of the current mean effective stress and the additional mean effective stress due to structure (structure strength). The presence of structure increases the modified mean effective stress and yield surface, enhancing the cohesion, peak strength and stiffness. The destructuring begins when the stress state is on the virgin yield surface. After the failure (peak strength) state, the abrupt destructuring occurs as the soil–cementation structure is crushed; hence the strain softening. The soil structure is completely removed at the critical state when the yield surface becomes identical to the destructured surface. The destructuring law is proposed based on this premise. In the MSCC model, the yield function is the same shape as that of the Modified Cam Clay (MCC) model. A plastic potential is introduced so as to account for the influence of structure on the plastic strain direction for both hardening and softening behaviours. The required model parameters are divided into those describing destructured properties and those describing structured properties. All the parameters have physical meaning and can be simply determined from the conventional triaxial tests. Thus, the MSCC model is a useful tool for geotechnical practitioners. The capability of the model is verified by the test results of destructured, natural structured and artificially structured clays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.