Abstract
The morphological evolution of zinc oxide (ZnO) thin films deposited by magnetron sputtering is described by the use of a Structure Zone Model. A modified Structure Zone Model was revealed, in which the boundaries between zones with specific features are shifted toward lower homologous temperatures (T/Tm) than in the classical models. The range of homologous temperatures for this study were 0.13 < T/Tm < 0.43. The promotion of the formation of high temperature structures at relatively low temperatures is a consequence of the energetic species generated during the sputtering process that bombard the growing film. The reduction of the shadowing effect, along with the substrate heating that increases the surface diffusion, led to the suppression of zone T. Two new subzones of zone II were identified, IIa and IIb. The film in subzone IIa displays pronounced faceting. The film in subzone IIb has a characteristic smooth surface due to enhanced surface diffusion at higher substrate temperatures during deposition, although pitted due to still incomplete surface diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.