Abstract
Dye-doped silica nanoparticles (NPs) have been demonstrated to be sensitive labeling markers for biosensing and bioimaging. Their flexible conjugation, excellent photostability and ultrasensitivity make them a powerful tool in biological analysis. Although there have been many reports on the basic research and application of these NPs, they are far from reaching their full potential. Silica NPs can be obtained through two principal approaches: the Stober synthesis and the microemulsion method. The Stober synthesis has the advantage of being easily scaled up for commercial applications and the possibility to effortlessly transfer the NPs into aqueous solutions (typical of bioanalysis). However, further investigation on the impact of the synthesis parameters on the particles size and on the doping process are needed in order to obtain highly luminescent particles. In this study a modified Stober synthesis is proposed and a systematic study of the different reagents is reported, which provides a better picture on the influence of ethanol, ammonia, water, silica precursors, and dye concentration on the final morpho-optical properties. As a result, samples of luminescent silica NPs from 10 to 300 nm have been synthesized and optimized to be highly promising labels for biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.