Abstract

The modified spin-wave theory is used to investigate the one-dimensional Heisenberg ferromagnet with the nearest-neighbor (NN) and next-nearest-neighbor (NNN) exchange anisotropies. The ground-state and low-temperature properties of the system are studied within the self-consistent method. It is found that the effect of the NN anisotropy on the thermodynamic quantities is stronger than that of the NNN anisotropy in the low-temperature region. The anisotropy dependence behaviors (such as the power, exponential and linear laws) are obtained for the position and the height of the maximum of the specific heat and its coefficient, as well as the susceptibility coefficient. The specific heat and its coefficient both display the low-temperature double maxima which are induced by the anisotropies and the NNN interaction. In the very low temperatures the specific heat and the susceptibility behave severally as T[Formula: see text] and T[Formula: see text] at the critical point J2/J1 = −0.25, where J1 and J2 are the NN and NNN interactions, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call