Abstract

A fluorescence sensor for nitric oxide (NO) was realized by covalently immobilizing reduced fluoresceinamine molecules onto the surface of silicon nanowires (SiNWs). The fluorescence intensity of the sensor can be greatly enhanced by NO. The sensor exhibits excellent selectivity for NO against other reactive species. Facile synthesis, nontoxicity, rapid response and use in a 100% aqueous solution endows the present sensor with suitability for biosystems. As an application, the sensor was used to detect NO released from liver extract, and exhibited high sensitivity and selectivity as well as rapid response. The fluorescence image from a single SiNW-based sensor showed a fine spatial resolution. The present sensor paves a way to detect NO at specific location in a single cell by inserting a single SiNW-based sensor into the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.