Abstract

Hydrogels are encouraging for different clinical purposes because of their high water absorption and mechanical relation to native tissues. Injectable hydrogels can modify the invasiveness of utilization, which decreases recovery and surgical costs. Principal designs applied to create injectable hydrogels incorporate in situ formation owing to chemical or/and physical crosslinking. Here, we report nontoxic, thermosensitive, injectable hydrogels composed of gelatin (GEL) and oxidized alginate (OA) reinforced by silicon carbide nanoparticles (SiC NPs) and crosslinked with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The mechanical characteristics of the hydrogels were examined via rheological analysis. The outcomes reveal that extending the SiC NPs contents enhances the mechanical properties around five times. The cross-sectional microstructure of the scaffolds comprising 0.25, 1.0, and 1.5% SiC NPs was scrutinized by FESEM, verifying porous structure with interconnected pores. Because of the smaller pore sizes in the hydrogels, the swelling rate has reduced at the higher content of SiC, which diminishes the water uptake. Additionally, the biodegradation study unveils that the hydrogels with SiC are more long-lasting than the hydrogel without SiC. By adding SiC NPs, a decrease is observed in the biodegradation and swelling ratio. The scaffold with a higher SiC NPs content (1.5%) manifested better cell attachment and was less cytotoxic than hydrogel without SiC. OA/GEL composites embedded SiC NPs have manifested excellent physical properties for tissue engineering in comparison with hydrogel without nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.