Abstract

Abstract The shift away from fossil fuels for modern-day energy requirements has resulted in a higher demand for electric vehicles and has led to a critical role for lithium-ion batteries. Next-generation higher capacity electrode materials are needed to meet the demands of future electric vehicles. Lithium-ion batteries function optimally around room temperature (23 °C), but discharge capacity diminishes rapidly below 0 °C and significantly affects the population living in colder climates. Higher capacity electrode materials such as silicon need to be paired with new electrolytes that favor ideal low-temperature performance. This work pairs a typical nickel-rich lithium cathode with a modified silicon anode and a ternary carbonate/ester electrolyte to demonstrate improved discharge capacity at subzero temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call