Abstract

Fractal Gaussian noise is a stationary Gaussian sequence of zero-mean random variables whose sums possess the stochastic self-similarity property. If the random variables are independent, the self-similarity coefficient equals 1/2. The sign criterion for testing the hypothesis that the parameter equals 1/2 against the alternative H � 1/2 is based on counting the sign change rate for elements of the sequence. We propose a modification of the criterion: we count sign change indicators not only for the original random variables but also for random variables formed as sums of consecutive elements. The proof of the asymptotic normality of our statistics under the alternative hypothesis is based on the theorem on the asymptotics of the covariance of sign change indicators for a zero-mean stationary Gaussian sequence with a slowly decaying correlation function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.