Abstract

By making Cu2O nanocubes, octahedra, and rhombic dodecahedra with tunable sizes and recording their light absorption and emission spectra, their absorption and emission bands shift steadily to longer wavelengths with increasing particle sizes from 10 nm to beyond 250 nm. Emission intensities are highest for the smallest nanocubes. Photoluminescence band shifts exceed 130 nm over this size range. For particles having the same volume, rhombic dodecahedra absorb light of shortest wavelength, while cubes show most red-shifted absorption with their band gaps differing by 0.17 eV (or 51.5 nm). They show obviously different colors. The presence of optical size and facet effects in semiconductors means that their emission wavelengths are tunable through facet control and use of nanocrystals much larger than quantum dots. A modified and general band diagram for Cu2O crystals has been constructed incorporating their optical size and facet effects with surface band bending. In addition, a more complete understanding...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.