Abstract

Abstract A new computation scheme proposed to tackle commensurate problems is developed by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.