Abstract
Incorporating historical information in clinical trials has been of much interest recently because of its potential to reduce the size and cost of clinical trials. Data-conflict is one of the biggest challenges in incorporating historical information. In order to address the conflict between historical data and current data, several methods have been proposed including the robust meta-analytic-predictive (rMAP) prior method. In this article, we propose to modify the rMAP prior method by using an empirical Bayes approach to estimate the weights for the two components of the rMAP prior. Via numerical calculations, we show that this modification to the rMAP method improves its performance regarding multiple key metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.