Abstract
Contaminated data exist in diverse situations, even in high quality surveys and experiments. If classical statistic models are blindly applied to data containing outliers, the results can be misleading at best. In this paper, a modified robust continuum regression (mRCR) method is proposed to improve prediction performance for data with outliers. The mRCR method constructs projection pursuit directions by using projection matrix for computing the net analyte signal (NAS) of the target analyte. This paper examines applications to the determination of glucose concentration by near-infrared (NIR) spectrometry, including aqueous solution with glucose experiment, plasma experiment in vitro, oral glucose tolerance test (OGTT) in vivo, to illustrate the advantages of mRCR for various kinds of outliers depending on the way of contamination. The results indicate that the mRCR method is entirely robust with respect to any type of outlying observations, and it yields smaller prediction errors for normal samples than other calibration methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.