Abstract
Ridge regression is a variant of ordinary multiple linear regression whose goal is to circumvent the problem of predictors collinearity. It gives up the Ordinary Least Squares (OLS) estimator as a method for estimating the parameters of the multiple linear regression model . Different methods of specifying the ridge parameter k were proposed and evaluated in terms of Mean Square Error (MSE) by simulation techniques. Comparison is made with other ridge-type estimators evaluated elsewhere. The new estimators of the ridge parameters are shown to have very good MSE properties compared with the other estimators of the ridge parameter and the OLS estimator. Based on our results from the simulation study, we may recommend the new ridge parameters to practitioners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.