Abstract
In this paper, the rheological effects of coupled stress fluids on thin film lubrication modeling are developed. Thin porous layers attached to the impermeable substrate are utilized to model the microstructure of bearing surfaces. In the fluid film region, the constitutive equations for coupled stress fluids proposed by Stokes [1] as well as the continuity and momentum equations are applied to model the flow. In the porous region, the Brinkman-extended Darcy equations are applied to model the flow. Under the usual assumption of hydrodynamic lubrication applicable to thin films, the effects of viscous shear and the stress jump boundary condition at the porous media/fluid film interface are included in deriving the modified Reynolds equation. The effects of material properties such as coupled stress parameter Open image in new window viscosity ratio (αi2), thickness of porous layer (Δi), permeability (Ki), and stress jump parameter (βi), on the velocity distributions and load capacities of one-dimensional converging wedge problems are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.