Abstract
In longitudinal clinical trials, missing data are inevitable due to intercurrent events (ICEs) such as treatment interruption or premature discontinuation for different reasons. The COVID-19 pandemic has had substantial impact on clinical trials since early 2020 as it may result in missing data due to missed visits and premature discontinuations. The missing data due to COVID-19 can reasonably be assumed as missing at random (MAR).We propose a combined hypothetical strategy for sensitivity analyses to handle missing data due to both COVID-19 and non-COVID reasons. We modify the commonly used missing not at random (MNAR) methods, reference based imputation (RBI) and tipping point analysis, under this strategy. We propose the standard multiple imputation approach and derive an analytic likelihood based approach to implement the proposed methods to improve efficiency in applications. The proposed strategy and methods are applicable to a more general scenario when there are missing data due to both MAR and MNAR reasons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.