Abstract
An improvement to the AIREBO potential for hydrocarbons is presented in which contributions to the bond order are determined by the local bonding environment around the bond, rather than the average of the environments around the two constituent atoms. This bond-centric approach decreases the errors by ~80% in the fullerene-type systems for which the original approach leads to the most severe errors. With the newly developed and parameterized method, energy errors are less than 0.7 eV for a collection of hydrocarbon molecules not used in the fitting. This modified AIREBO potential is expected to be more useful not only for the molecular hydrocarbons and fullerene isomers studied here, but also for the full range of carbon and hydrocarbon systems to which the AIREBO potential has been applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.