Abstract

PurposeTo compare tumor vascularity in 4 types of rat hepatocellular carcinoma (HCC) models: N1S1, vascular endothelial growth factor (VEGF)-transfected N1S1 (VEGF-N1S1), McA-RH7777, and VEGF-transfected McA-RH7777 (VEGF-McA-RH777) tumors. Materials and MethodsThe N1S1 and McA-RH7777 cell lines were transfected with expression vectors containing cDNA for rat VEGF. Eighty-eight male Sprague–Dawley rats (weight range, 400–450 g) were randomly divided into 4 groups (ie, 22 rats per model), and 4 types of tumor models were created by using the N1S1, VEGF-N1S1, McA-RH7777, and VEGF-McA-RH777 cell lines. Tumor vascularity was evaluated by perfusion computed tomography (CT), enzyme-linked immunosorbent assay of VEGF, CD34 staining, angiography, and Lipiodol transarterial embolization. Intergroup discrepancies were evaluated by Kruskal–Wallis test. ResultsArterial perfusion (P < .001), portal perfusion (P = .015), total perfusion (P < .001), tumor VEGF level (P = .002), and microvessel density (MVD; P = .007) were significantly different among groups. VEGF-McA-RH7777 tumors showed the greatest arterial perfusion (46.7 mL/min/100 mL ± 15.5), total perfusion (60.7 mL/min/100 mL ± 21.8), tumor VEGF level (3,376.7 pg/mL ± 145.8), and MVD (34.5‰ ± 7.5). Whereas most tumors in the N1S1, VEGF-N1S1, and McA-RH7777 groups showed hypovascular staining on angiography and minimal Lipiodol uptake after embolization, 5 of 6 VEGF-McA-RH7777 tumors (83.3%) presented hypervascular tumor staining and moderate to compact Lipiodol uptake. ConclusionsMcA-RH7777 tumors were more hypervascular than N1S1 tumors, and tumor vascularity was enhanced further by VEGF transfection. Therefore, the VEGF-McA-RH7777 tumor is recommended to mimic hypervascular human HCC in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call