Abstract
The hot-deformation behavior of the as-cast Mn18Cr18N high-nitrogen austenitic stainless steel, produced with the electroslag-remelting metallurgical technology, was studied using isothermal-compression tests in a temperature range of 1223–1473 K) and a strain-rate range of 0.001–1 s–1). The flow-stress curves of the Mn18Cr18N steel were obtained under different hot-deformation conditions. By establishing the hyperbolic sine-law Zener-Hollomon equation, the hot-deformation activation energy of the Mn18Cr18N steel was obtained. Based on the mechanism of dislocation evolution, a physically-based constitutive model was established. In addition, the expression of the dynamic-recovery coefficient of the model was modified. Compared with the model before the modification, the modified constitutive model could effectively improve the prediction accuracy of the flow stress for the as-cast Mn18Cr18N austenitic stainless steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.