Abstract

Traditional amine terminated PAMAM dendrimers may be readily surface engineered by a facile one-pot conversion with dialkyl itaconate esters into 4-carbomethoxypyrrolidone terminated PAMAM (G=0-4) dendrimers. These terminated dendrimers are uniquely characterized by exhibiting blue fluorescence emissions (λexc=370nm, λmaxem=440nm). Thanks to this property they can be directly analyzed by confocal microscopy and flow cytometry without additional fluorescence labeling, treatment of dendrimers with chemicals or adjusting pH. These intrinsically fluorescent dendrimers were shown to be very effective for assessing important biological cell features such as cellular entry, intracellular trafficking/localization and efflux properties. For example, all tested cell lines (e.g., B14, BRL-3A, and mHippoE-18) rapidly accumulated PAMAM-pyrrolidone dendrimer. The BRL-3A cell line exhibited both cytoplasmic and nuclear localization patterns; whereas in B14 cells and mHippoE-18 cells, the blue dendrimer fluorescence could only be detected in intracellular endosome-like structures. The dendrimer was observed to be released from all three cell lines during the first 24h; however, efflux was substantially slower from the B-14 cell line. The highest efflux rate was observed for the mHippoE-18 cells. This first successful biological experiment opens a broad spectrum of using these dendrimers as new bioimaging agents for extensive biological cell characterizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.