Abstract

In this study, an overlapping grain size distributed model (OGSDM) was proposed to investigate the kinetics of carbonation by CO2 of a synthetic zirconia-stabilized Ca-based sorbent composed of 10 wt % ZrO2 and 90 wt % CaO in the subsequent calcium-looping cycle. In the OGSDM, the synthesized calcium-based particle consisted of initial numerous nonuniform spherical grains, which were allowed to overlap. The initial size distribution of grains was obtained through the pore-to-sphere factor method using BET–BJH analysis data. The OGSDM was improved by considering a variable diffusion coefficient of the gaseous reactant through the development of the product layer as a function of overall conversion. Mathematical modeling using the grain size distributed model (GSDM) and the OGSDM was used to calculate the overall conversion over the reaction time. It was found that the assumption of overlapping spherical grains improved the ability of the grain model in the kinetic study of the gas–solid reactions. Profiles...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.