Abstract
Organosilane monolayers containing long carbon chains are susceptible to damage when exposed to X-rays and other radiation during characterization or processing. The origin of the damage has been attributed to both energetic photons and photoelectrons. These particles can break bonds in the molecules comprising the layer altering its composition and structure and can create silanol groups at the interface between the monolayer and the silicon dioxide surface. A common practice to minimize damage is to keep the X-ray beam time as short as possible. In this study, we report a method to deposit an organosilane monolayer on silicon dioxide that withstands X-ray beam damage to the interface. Adding the small monofunctional trimethylchlorosilane to a layer composed of the long-chain trifunctional octadecyltrichlorosilane prevented X-ray beam damage for at least 4 h. Interfacial damage was monitored by titrating silanol groups with TiCl4 and water atomic layer deposition and measuring the TiO2 deposited by X-ray photoelectron spectroscopy (XPS). The small monofunctional silane reacted with residual silanol groups capping the siloxane (-Si-O-Si-O-) chains at the interface. The low silanol group concentration minimized X-ray beam damage and prevented TiO2 from depositing to the detection limit of XPS. Using a small molecule to terminate reactive groups could improve the stability of monolayers not only during characterization and processing, but also when the monolayer is a component in an electrical device by reducing sources of interfacial charge traps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.