Abstract

Low primary patency rate is a major problem of radio-cephalic arteriovenous fistula (RC-AVF) creation. Radial artery deviation and reimplantation (RADAR) is associated with low juxta-anastomotic stenosis rate. However, inflow artery stenosis is prominent with RADAR. To further reduce injury to veins and arteries during operation, a modified no-touch technique (MNTT) was used to create RC-AVF. We retrospectively reviewed our prospectively maintained database of patients with end-stage renal disease (ESRD)s undergoing RC-AVF creation for hemodialysis using either the MNTT between January 2021 and January 2022 (MNTT group) or conventional surgical procedure ( end-to-side vein-to-artery anastomosis) between October 2016 and October 2017 (Control group). Patients who chose to undergo RC-AVF surgery underwent standardized preoperative mapping and postoperative fistula evaluations using duplex ultrasound. Additionally, 4D flow MRI data were used to visualize and quantify the hemodynamics of one RC-AVF by MNTT. Outcomes included primary patency, juxta-anastomotic stenosis, and maturation rates. Forty patients underwent RC-AVFs by MNTT, compared to 60 patients in the control group. The MNTT group had a higher primary unassisted patency rate than the control group (p = 0.038). Juxta-anastomotic stenosis (all on the cephalic vein) occurred in 4 (10%) patients who underwent MNTT. RC-AVF maturation rates after 3 months were not different between both groups (maturation rate: 90% and 81.7% in the MNTT and control groups, respectively, p = 0.253). COX regression showed that both conventional AVF surgery (p = 0.031) and smaller cephalic vein diameter (p = 0.034) were associated with higher odds of RC-AVF failure. The AVF flow within the proximal vein remained helical during cardiac cycle. The distribution of wall shear stress (WSS) and oscillatory shear index (OSI) differed from that of conventional surgical AVF. RC-AVF by MNTT increases primary patency rate and decreases juxta-anastomotic stenosis rate. The improvement in hemodynamics may be one of the important reasons for the better patency rate of in the RC-AVF by MNTT group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call