Abstract
<p>In this paper, an active set recognition technique is suggested, and then a modified nonmonotonic line search rule is presented to enhance the efficiency of the nonmonotonic line search rule, in which we introduce a new parameter formula to attempt to control the nonmonotonic degree of the line search, and thus improve the chance of discovering the global minimum. By using a modified linear search and an active set recognition technique, a global convergence gradient solution for nonnegative matrix factorization (NMF) based on an alternating nonnegative least squares framework is proposed. We used a Barzilai-Borwein step size and greater step-size tactics to speed up the convergence. Finally, a large number of numerical experiments were carried out on synthetic and image datasets, and the results showed that our presented method was effective in calculating the speed and solution quality.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.